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ABSTRACT

Motivation: Motivated by the abundance, importance and unique

functionality of zinc, both biologically and physiologically, we have

developed an improved method for the prediction of zinc-binding

sites in proteins from their amino acid sequences.

Results: By combining support vector machine (SVM) and

homology-based predictions, our method predicts zinc-binding

Cys, His, Asp and Glu with 75% precision (86% for Cys and His

only) at 50% recall according to a 5-fold cross-validation on a non-

redundant set of protein chains from the Protein Data Bank (PDB)

(2727 chains, 235 of which bind zinc). Consequently, our method

predicts zinc-binding Cys and His with 10% higher precision at

different recall levels compared to a recently published method when

tested on the same dataset.

Availability: The program is available for download at www.fos.

su.se/�nanjiang/zincpred/download/

Contact: svenh@struc.su.se

Supplementary information: All Supplementary Data can be

accessed at www.fos.su.se/�nanjiang/zincpred/suppliment

1 INTRODUCTION

About one-third of proteins in the Protein Data Bank (PDB)

(Bernstein et al., 1977) contain metals, and it is estimated that

approximately the same proportion of all proteins are

metalloproteins (Holm et al., 1996). Metal atoms are critical

to the function, structure and stability of proteins. Zinc is the

second (after iron) most abundant metal found in eukaryotic

organisms (Coleman, 1992). Zinc plays important roles, mainly

catalytic and structural, in many biological functions. For

example, zinc ions serve as powerful electrophilic catalysts in

many hydrolases and lyases (McCall et al., 2000). Zinc-binding

stabilizes the folded conformations of domains so that the

protein can function properly (Berg and Shi, 1996), e.g. zinc-

finger proteins. The biological roles of zinc have been

extensively reviewed (Brewer et al., 1983; Stefanidou et al.,

2006). The accurate prediction of zinc-binding sites is not only

important for function annotation of proteins but also helpful

for three-dimensional structure prediction.
Metal-binding sites have been predicted based on structural

information (Gregory et al., 1993; Sodhi et al., 2004).

Predictions from protein sequences only have received less

attention. Early approaches can be found in the work of

Nakata et al. (1995), in which they tried to predict zinc-finger

DNA-binding proteins with a neural network. Those

approaches were limited by the scarcity of data at that time

and the method was applicable only to certain types of zinc-

binding proteins. Andreini et al. (2004) used a regular

expression matching method supplied by PHI-BLAST (Zhang

et al., 1998) to explore copper-binding patterns. They showed

that the confidence for a scanned pattern to be copper-binding

was 490% when the percentage of identical amino acids

aligned around the metal-binding pattern by PHI-BLAST was

420% with respect to the protein domain length. However,

the success rate for zinc-binding sites was not available. A

breakthrough for predicting zinc-binding sites from sequences

was done by Menchetti et al. (2006) and Passerini et al. (2007).

In their work, zinc-binding residues were predicted by a local

predictor and a gated predictor using support vector machines

(SVM). For the local predictor, all Cys and His (CH) were

selected. Feature vectors which represented a window of

residues centered at selected CH were encoded by the position

specific substitution matrices (PSSM) from PSI-BLAST

(Altschul et al., 1997). For the gated predictor, residue pairs

were picked out by scanning amino acid sequences with a semi-

pattern [CH]x(0–7)[CH] (C is cysteine and H is histidine, x(0–7)

stands for a consecutive substring of any amino acids with a

length from 0 to 7). These selected residue pairs were encoded

similarly as in the local predictor. The gated predictor

combined the predictions of the local predictor and the semi-

pattern predictor by a gating network. Their method predicted

zinc-binding Cys and His with 60% precision at 60% recall

based on a 5-fold cross-validation (Menchetti et al., 2006). For

the less common zinc-binding residues Asp and Glu, the result

was less satisfactory. Passerini et al. (2006) described a method

to predict metal-binding Cys and His based on a two-stage

machine learning approach. The first step was similar to the

local predictor in Menchetti et al. (2006). Individual Cys and

His were encoded into feature vectors using PSSMs and global

descriptors such as protein length and amino acid composition.

These feature vectors were then classified by SVM. After that, a

three layer bi-directional recurrent neural network (BRNN)

was used to further distinguish metal-binding and non-metal-

binding Cys and His. For zinc-binding Cys and His,

SVM-BRNN predicted with 75% precision at 50% recall.
The rapidly increasing number of high-quality structures

deposited in PDB and the availability of PSI-BLAST, which

provides a reliable multiple sequence alignment among protein

families, encouraged us to predict zinc-binding proteins from

sequences on a database scale, using the evolutionary*To whom correspondence should be addressed.
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information. We have developed an improved method for
predicting zinc-binding sites from sequences, focusing on four

amino acids Cys, His, Asp and Glu (CHDE), since these four

amino acids account for about 96% of all zinc-binding residues

(Table 1). The method was tested on the same non-redundant

set of PDB chains as used in Passerini et al. (2006).

2 METHODS

Our method consists of an SVM-based predictor and a homology-based

predictor. For the SVM-based predictor, CHDEs were selected in both

training set and test set and were encoded into single-site vectors and

pair-based vectors which represented a window of residues centered at

each selected CHDE or a pair of selected CHDEs respectively (see

Section 2.2). SVM was then used to train feature vectors of the training

set and to make the prediction on the test set. The publicly available Gist

SVM package (version 2.1.1) (Pavlidis et al., 2004) was used to

implement SVM. The radial basis kernel was used. SVM predictions

on individual selected residues were obtained by combining the

predictions using single-site vectors and pair-based vectors with a

gating network. For the homology-based predictor, each target chain in

the test set was searched against the training set for remote homologues

using a segment matching method (see Section 2.4). Predictions of zinc-

binding residues were made based on predicted homologues in the

training set. The final predictions were obtained by a consensus of SVM

predictions and homology-based predictions. The whole prediction

procedure is illustrated in Figure 1.

2.1 PSSM and conservation level

PSSM profiles were obtained by running PSI-BLAST (version 2.2.13)

against the NCBI nr database (version April 2006) for three iterations

with an E-value threshold of 0.001. The conservation score for residue k

in the sequence ConScorek was calculated as follows,

ConScorek ¼
Mk, aðkÞ �MIN MaðkÞ

MAX MaðkÞ �MIN MaðkÞ
ð1Þ

MIN Mj ¼ min
over all residues

with aðkÞ¼j

ðMk, jÞ, j ¼ A,R,N . . . ,Vð20 amino acidsÞ

ð1:1Þ

MAX Mj ¼ max
over all residues

with aðkÞ¼j

ðMk, jÞ, j ¼ A,R,N . . . ,Vð20 amino acidsÞ

ð1:2Þ

where a(k) was the amino acid type (one of the 20 amino acids) of

residue k, Mk,a(k) was the log-odd score of the profile at position k (the

profile at each sequence position contains 20 items corresponding to 20

amino acids) on amino acid a(k), MAX_Mj and MIN_Mj were the

maximum and minimum log-odd scores of profiles for all residues with

amino acid type j on amino acid j. The conservation score ranged from

0 (un-conserved) to 1 (most highly conserved). For example, for Cys,

MAX_MC¼ 12 and MIN_MC¼�5. Then, for a Cys with the log-odd

score on C (cysteine) equaling 7, the conservation score is calculated

as 0.71.

2.2 SVM-based predictor

A feature vector represented the conservativity and physicochemical

properties of selected amino acids which were either zinc-binding or

not. SVM were used to classify these feature vectors as either positive

(zinc-binding) or negative (non-zinc-binding). A single-site vector

represented a window of residues centered at each selected CHDE.

SVM predictions using single-site vectors resulted in a basic prediction

for all CHDEs. Biologically significant Zn atoms (i.e. Zn3 and Zn4) are

bound to 3 or 4 residues, and these residues are expected to be

correlated. Pair-based vectors interpreted the correlation between these

residues by taking a pair of selected CHDEs as centered residues in a

window. The SVM predictions using single-site vectors and pair-based

vectors were combined by a gating network described in Menchetti et

al. (2006). The SVM outputs had been converted into conditional

probabilities using a sigmoid function suggested in Platt (2000) in order

that they could be combined by the gating network. The sigmoid

function was defined as

P Y ¼ 1jxð Þ ¼
1

1þ expðA*fðxÞ þ BÞ
ð2Þ

where x was the SVM input of each test instance, f(x) denoted the

margin of test instance x, P(Y¼ 1|x) was the probability of zinc-binding

Table 1. Number of residues bound to each type of Zn atom

C H D E Others Subtotal No. of

Zn atoms

No. of

chains

Zn1a 1 10 9 10 3 33 34 19

Zn2a 3 32 15 26 7 83 45 37

Zn3a 25 134 54 30 7 250 89 73

Zn4a 499 190 41 24 15 769 205 148

Zn5a 7 1 0 0 2 10 2 2

Co-cat Znb 46 59 38 22 10 175 67 35

Subtotal 535 366 116 85 24 1136 375 235

Subtotalc 531 325 92 51 24 1023 295 210

aZn1, Zn2, Zn3, Zn4 and Zn5 are Zn atoms binding to 1, 2, 3, 4 and 5 amino acid

residues, respectively. bCo-catalytic Zn: Zn atoms bind to 3, 4 or 5 amino acids

and are bridged to another metal atom(s) via side chain atoms or water molecules.
cSubtotal for Zn3, Zn4, Zn5 and Co-Catalytic Zn.

Single-site vectors for SVM 
classifying 

C4: vector1 
E5: vector2 
E6: vector3 
C7: vector4 
... 

Select Cys, His, Asp and Glu 

Pair-based vectors for SVM 
classifying 

C4-C7: vector1 
C4-H20: vector2 
C4-H24: vector3 
… 
E5, E6 and C11 are skipped 
because their conservation
scores are below the threshold 

Detect remote
homologous chains in
the training set using

the Segment Matching
Method

 

SVM predictions combining scores
for single-site vectors and for pair-

based vectors 
C4: 1.93 
E5: −0.57 
E6: −0.44 
C7: 2.15 
… 

Scores for zinc-binding 
from detected homologues 

(if no homologues 
detected, set the score to 0) 

 
C4: 2.33 
E5: 0.00 
E6: 0.00 
C7: 2.33 
… 

Consensus scores from SVM predictions and homology-
based predictions 

 

C4: 0.99  -- highly predicted as zinc-binding 
E5: 0.01  -- highly predicted as non zinc-binding 
E6: 0.02  -- highly predicted as non zinc-binding 
C7: 0.99  -- highly predicted as zinc-binding 
… 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27   
K Y I C E E C G I R C K K P S M L K K H I R T H T D V 

Scores for single-site vectors 
C4: 1.17 
E5: −1.70 
E6: −1.32 
C7: 1.28 
… 

Scores for pair-based vectors 
 

C4-C7: 1.08 
C4-H20: 1.13 
H4-H24: 0.88 
… 

Fig. 1. Flowchart for the overall prediction method. SVM predictions

and homology-based predictions are combined into the final consensus

prediction.
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prediction, and A and B were the slope and offset respectively to be

learned [by a 3-fold cross-validation method suggested in Platt (2000)]

from the training set for the sigmoid function. Empirically, one could

use A¼�2.0, B¼�0.5 for single-site vectors and A¼�4.0, B¼�0.5

for pair-based vectors. In order that the scores of SVM predictions by

the gating network can be combined linearly with the scores of

homology-based predictions, we converted conditional probabilities

back to SVM functional margins by

fðxÞ ¼
lnðð1� pÞ=pÞ � B

A
ð3Þ

where f(x) was the SVM prediction score for each test instance x, p was

the conditional probability for zinc-binding by the gating network, and

A and B were the same as used in the sigmoid function. Equation (3) is

actually an inverse function to Equation (2).

To select the residue pairs, Menchetti et al. (2006) employed the

[CHDE]x(0–7)[CHDE] semi-pattern (meaning C, H, D or E followed by

C, H, D or E within 0–7 residues) to pick out such pairs. However, that

method missed about 40% of all zinc-binding CHDEs (Table 2).

We selected residue pairs by first picking out all CHDEs with

conservation scores �0.75 and then picking out all pairs of these

conserved CHDEs which are separated by less than 150 residues in

sequence. Our method identified more zinc-binding CHDEs, with less

selected residues (Table 2). Details about the encoding of the single-site

vectors and pair-based vectors can be found in the Supplementary Data.

2.3 Homology-based predictor

Generally speaking, if a protein has a homologous protein that is zinc-

binding, the probability that this protein is also zinc-binding is much

higher, especially when this protein has a sequence pattern similar to the

homologous zinc-binding protein. Therefore, if a chain in the training

set was found with a similarity score (see Section 2.4.2) higher than a

certain threshold, e.g. 25.0, information such as metal binding sites and

disulfide-bonds was utilized to calculate the zinc-binding score for

selected CHDEs of the target chain. If the matched region in the

detected chain was

(a) Non-zinc-binding, set a negative score �ZS to all selected

CHDEs

(b) Disulfide-bonded, set a negative score �ZS to all Cys.

(c) Zinc-binding, set a positive score ZS to residue groups that best

match patterns of residues bound to a Zn atom.

ZS was defined as ZS¼ SS * scale, where SS was the homology score

(described in Section 2.4.2) for the predicted remote homologue. Scale

was defined as
ffiffiffiffi
N

p
/50, whereNwas the number of homologues predicted

for the target chain. Scale was divided by 50 so that the average ZS score

derived from the predicted homologues was the same as the average score

derived from SVM predictions. The zinc-binding scores of individual

residues of a target chain were calculated as the average of similarity

scores derived from all predicted homologues to that chain.

2.4 Segment matching method for finding remote

homologues

Homologues were predicted by a segment matching method. It contains

two steps.

2.4.1 Segment matching For each chain in the test set, a sliding

window of nine residues was searched against all nine-residue segments

in the training set (note that the window here was different from the

window used in SVM feature vector encoding, the former was centered

at any residue in the sequence, while the latter was centered at a selected

CHDE). The similarity between this nine-residue segment and its

corresponding segment in the training set was defined as

Score ð�,�Þ ¼
X9
n¼1

X20
i¼1

�ni log
�ni
Pi

� �
þ �ni log

�ni
Pi

� �� � !
ð4Þ

where � and � were profiles of a nine-residue segment in the test set and

a corresponding segment in the training set, P was the background

frequency for 20 amino acids. The profile-profile score between two

residue positions is the same as the PICASSO3 score as suggested by

Mittelman et al. (2003).

2.4.2 Finding remote homologues For each segment of a chain

in the test set, up to 100 fragments from the training set with the highest

similarity scores as defined in Equation (4) were kept, including the

PDB code and segment position for each of these closest matches. If a

homologous protein chain exists in the training set, many fragments

from this chain tend to have high-similarity scores with the

corresponding fragments in the target chain, which means that the

PDB code of this chain will appear frequently in the list of matched

segments. We made use of this for finding remote homologues in the

following way. For those protein chains that appeared often (typically

410% of the number of residues of the sequence) in the list, a dot plot

was made. This diagram was drawn by setting the X values as positions

of the central residues of the nine-residue segment of the target chain in

the test set and the Y values as positions of corresponding segments in

the matched list (see Fig. 2A). The dots on such diagrams tend to be

clustered into consecutive lines. This is not surprising, since two

adjacent nine residue segments have eight residues in common, and thus

will often pick up two adjacent nine residue segments from the same

protein. When such a diagram is composed of just a few long

consecutive lines of dots, it is very likely that the matched protein is

homologous to the target chain in the test set. A homology score was

derived from the length and linearity of the pattern divided by the

average sequence length of these two chains. The algorithm for deriving

the homology score is summarized as follows,

Initializing the score on the dot plot:

For each diagonal on the dot plot

(1) Set the score of each dot as the number of consecutive dots

(2) Record the position of the diagonal with the top 10 longest

consecutive dot segments

Calculating the score of each diagonal:

For each diagonal with the top 10 longest consecutive dot segments

The homology score is calculated as the sum of

(1) The scores of all dots on the diagonal and

(2) The scores of all dots on the other diagonals divided by the

distance to that diagonal

Table 2. Comparison of zinc-binding residues (those bind to Zn3, Zn4,

Zn5 and Co-catalytic zinc) selected by the pair selecting method based

on highly conserved CHDEs and semi-pattern [CHDE]x(0,7)[CHDE]

Method No. of

selected

residues

No. of

selected zinc-

binding residues

Recall

(%)

Precision

(%)

Conserved CHDEsa 12 969 869 87.0 6.7

Semi-patternb 59 642 611 61.2 1.0

aResidues with conservation score (described in Methods) �0.75 were considered

as highly conserved. Residues in the pair were separated by less than 150 residues

in sequence. bSemi-pattern [CHDE]x(0,7)[CHDE] means C, H, D or E followed

by C, H, D or E within 0 to 7 residues according to Menchetti et al. (2006).
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Calculating the homology score for the whole chain:

Set the highest homology score of all diagonals as the homology

score of the whole chain

The homology scores for all predicted homologues were normalized to

[0, 100] by setting the lowest homology score to 0 and the highest to 100.

For multi-domain sequences, the range of the homologous part was also

predicted from the extent of these linear and consecutive patterns.

In some cases many high-scoring nine-residue segments were detected

from a single chain, but they were rather randomly spread out over the

dot plot (see Fig. 2B). Such cases we did not predict as likely homologues.

2.5 Performance measurement

The Precision was defined as TP/(TPþFP), where TP (true positives)

referred to the number of correctly identified positive examples (zinc-

binding residues or proteins); FP (false positive) was the number of

negative examples (residues or proteins predicted to bind zinc, although

they do not bind zinc according to PDB) that were incorrectly predicted

as positive. The Recall was defined as TP/(TPþFN), where FN (false

negative) was the number of positive examples that were incorrectly

predicted as negative. In this work, the negative examples are far more

than the positive examples. The negative to positive ratios are 26:1 and

93:1 for CH and CHDE, respectively. For such an unbalanced dataset,

receiver operating characteristic (ROC) curves can present an overly

optimistic view of the performance of a method (Davis and Goadrich,

2006). The Recall–Precision curve, in which one plots the Precision

against the Recall, has been proposed as an alternative to the ROC

curve in dealing with datasets with great unbalance in the class

distribution (Zhang et al., 2004). The Area Under the Recall-Precision

Curve (AURPC) was used in our method for both model selection and

performance measurement. AURPC was calculated by a method

proposed by Davis and Goadrich (2006).

2.6 Data and statistics

We used a non-redundant set of PDB containing 2727 protein

sequences as used in Passerini et al. (2006) to test our method. This

dataset was culled at zero HSSP (Homology derived Secondary

Structure of Proteins) distance by uniqueProt (Mika and Rost, 2003).

These 2727 chains contain 564 444 residues, including 9202 Cys, 13 663

His, 32 466 Asp and 38 299 Glu. Out of these 2727 chains, 731 bind to at

least one metal atom. Among these 731 chains, 235 bind to at least one

Zn atom (see Supplementary Data). The total number of residues

binding to zinc was just over 1000, as shown in Table 1. Metal atoms

were considered binding to the protein chain if there were any nitrogen,

oxygen or sulfur atom of the residues on the chain located within 3.0 Å

to the metal atom [for specific distances between metal and atoms of the

residue see Harding (2004)]. Some residues that have atoms (e.g. in

chains 1I3QA, 1I3QL, 1IRXA, 1CVRA and 1PGUA) located between

3.0 and 3.5 Å to Zn atoms were manually curated as binding to zinc

(see Supplementary Data). Accordingly, the number of Zn atoms and

zinc-binding Cys and His slightly differed from Passerini et al. (2006).

Most Zn atoms (78%, see Table 1) bind to three or four residues

(called Zn3 and Zn4, we annotated Zn atoms coordinated by m residues

as Znm), i.e. 90% of all zinc-binding Cys, His, Asp and Glu are Zn3 or

Zn4 binding. Zn atoms that bind to four residues but having no bound

water molecules are considered as structural zinc, while those binding to

three residues are generally catalytic zinc (Auld, 2001). An example of a

protein containing both Zn3 and Zn4 is alcohol dehydrogenase, PDB

code 2OHX (Al-Karadaghi et al., 1994) (see Supplementary Data for

the illustration of the structure). Many Zn3 and Zn4 atoms have other

metal atoms nearby, bridged by a side-chain atom or a water molecule.

The activities of zinc-enzymes require these bridged metal atoms

working together. Such Zn atoms are called co-catalytic zinc. The Zn

atoms which bind to only one or two residues are generally located on

the surface of proteins. They are most probably bound to the proteins

during crystallization (McPherson, 1999) but have no biological

function. We focused here on predicting biologically important zinc-

binding sites, i.e. structural (Zn4), catalytic (Zn3) and co-catalytic zinc-

binding sites. Inter-chain Zn atoms, e.g. Zn atoms that bind to two

residues in one chain and one residue in another chain, and one Zn5

atom (see Table 1) were also included. There were in total 295 such Zn

atoms, bound to 531 Cys, 325 His, 92 Asp and 51 Glu (Table 1).

3 RESULTS AND DISCUSSIONS

3.1 Comparison with other methods

We evaluated the prediction of zinc-binding sites on both

protein level and residue level through a 5-fold cross-validation

just as in Passerini et al. (2006). A zinc-binding protein chain

was considered as correctly predicted if there was at least one

zinc-binding residue correctly predicted. The overall best results

on the residue level and protein level for CH were obtained for

k¼ 12 and w¼ 5 (k is the length of extension along the amino

acid sequence on both sides of the centered residue in a window

and w is the constant used when encoding the pair-based

vectors, see Supplementary Data for more details), giving an

average AURPC of 0.723 and 0.701, respectively. AURPC over

5-fold cross-validation for final predictions (Fig. 3A andB) show
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Fig. 2. Dot plots for the sequence number of the central residue of

matched nine-residue segments between (A) 1EG9A (449 amino acids)

and 1FQTA (112 amino acids) and (B) 1FLGA (582 amino acids) and

1GYCA (499 amino acids). Each dot on the dot plots represents a pair of

nine-residue long fragments with high similarity score as defined in

Equation (4). In the dot plot of (A), a high homology score (score¼ 41,

when cutting the homology score at threshold 25, 86% of all predicted

homologues are real homologues according to the SCOP (Andreeva

et al., 2004), see Section 3.2) was predicted from consecutively and

linearly distributed dots. Intuitively, one would also expect homology

between 1FQTA [1:100] and 1EG9A [40:150], and in fact, they are

homologous according to the SCOP definition (these two domains

belong to the same SCOP superfamily, the ISP domain). The sequence

identity between these two domains is barely 15%, showing the success of

the Segment Matching Method in remote homology detection. The

consecutive dot segments as marked by solid arrows predicted the

conserved homologous regions between 1FQTA and 1EG9A. Gaps

marked by dashed arrows predicted the varied regions and the gap

marked by the dashed-dot arrow predicted an insertion in the chain

1FQTA or deletion in 1EG9A in that region of the sequence. On the

other hand, in the dot plot of (B), the dots are not forming long lines as in

(A), though there are also a great number of dots. Low homology score

(score¼ 6) was predicted between 1FLGA and 1GYCA meaning that

they are not likely to be homologous. In fact, 1FLGA and 1GYCA are

not homologous according to the SCOP definition (they belong to

different folds in the SCOP, b.70.1.1 for 1FLGA and b.6.1.3 for

1GYCA).
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that our predictions for Cys and His are about 10% higher in

precision at different levels of recall than those of Passerini et al.

(2006). Note that Passerini et al. predicted not only Zn3 and Zn4

binding residues, but also Zn2 binding residues. The inclusion of

Zn2 binding residues tends to lower the prediction accuracy

since many of them might not be biologically bound.

Nevertheless, the inclusion of Zn2 as was done in Passerini

et al. would not have a great impact on the prediction accuracy

since Zn2 binding Cys and His take up only54% of all zinc-

binding Cys and His (see Table 1). In addition, the predictor of

Passerini et al. is motivated in predicting several different

transitional metal binding sites, and Zn binding site is only one

of them. As a consequence, their predictor might not be

specifically optimized for the prediction of zinc-binding sites.

Note also that in Passerini et al. (2006), positive examples are

proteins containing zinc-binding sites and negative examples are

non-metalloproteins. In Section 3.4, we showed that residues

binding to metals other than zinc, e.g. iron, were sometimes

falsely predicted as zinc-binding. The exclusion of non-zinc

metalloproteins from the negative examples tends to simplify the

zinc-binding prediction and thus yields overoptimistic results.

In our study, positive examples are zinc-binding CHDEs

(999 residues in 208 chains) or zinc-binding CHs (856 residues

in 199 chains) and the negative examples are all the rest of

CHDEs (92 643 residues) or CHs (22 020 residues). Despite all

these differences, the outperformance of our method to that of

Passerini et al. is significant.

Passerini et al. (2007) evaluated their zinc-binding residue

prediction method on a dataset containing 2428 chains. In their

5-fold cross-validation, no two chains having a domain

belonging to the same SCOP (Andreeva et al., 2004) super-

family exist in the same cross-validation fold. In such a cross-

validation procedure, homology-based prediction is not valid

since no homologues exist. We tested our SVM predictor also

on this dataset and with the same 5-fold separation. The SVM

predictions of our method for CH on residue level achieved an

AURPC of 0.617 (Fig. 3C). Our method outperformed that of

Passerini et al. (2007) who obtained an AURPC of 0.500 when

tested on the same dataset and the same cross-validation

separation. Note that the predictor of Passerini et al. (2007)

predicted Zn2 binding residues as well. However, most of the

Zn2 atoms which were annotated as interface Zn atoms in

Passerini et al., (2007) were included in Zn3 or Zn4 by our

method since they do bind to 3 or 4 residues, but on several

different chains. Therefore, the prediction results of our method

and that of Passerini et al. (2007) are comparable.

3.2 SVM predictions versus homology-based predictions

SVMpredictions using pair-based vectors performed better than

single-site vectors in Recall–Precision curves on both residue

level and protein level, especially at the low recall/high-precision

region (Fig. 4A). This outperformance may be due to the

potential correlation between zinc-binding residues as repre-

sented in pair-based vectors. The SVM predictions combining

the predictions from single-site vectors and pair-based vectors

were not better than predictions using only pair-based vectors.

The function of the gating network was just to add predictions

using single-site vectors on residues that cannot be predicted

using pair-based vectors (e.g. 13% of all zinc-binding CHDEs

were missed by the pair selecting method based on highly

conserved CHDEs). Note that the Recall–Precision curve of the

SVM prediction (Fig. 4A) is quite similar to that of Passerini

et al. (2006). It seems a simple SVM prediction using pair-based

vectors did as well as a more sophisticated BRNN procedure as

used by Passerini et al. (2006) in predicting zinc-binding sites.

On the other hand, the outperformance of our method seems

to come mainly from the homology-based predictor.

However, homology-based predictor alone predicted zinc-

binding residues with even lower accuracy than the SVM

predictor (Fig. 4A). The AURPC for CH on residue level were

0.579 and 0.650 for homology-based and SVM-based predic-

tions, respectively. Then, why did the consensus, using both the

homology-based predictor and the SVM predictor, produce

better results than either one of the methods, namely AURPC

0.723? When cutting the scores of SVM predictions at 0.3

[see Equation (3)] threshold, zinc-binding Cys and His were

predicted with 56% precision at 60% recall, yet still 406 Cys and

His were actually non-zinc-binding. However, the homology-

based predictor predicted these 406 Cys and His with low scores.

The average score of SVM predictions for these 406 residues was

0.518 while it was only �0.435 for homology-based predictions.

It means for these 406 residues, the inaccurate predictions by the

SVM predictor were compensated by the more accurate

predictions by the homology-based predictor. On the other

hand, when cutting the scores of homology-based predictions at

a threshold of 0.3, zinc-binding Cys and His were predicted

with 78% precision at 47% recall, yet 115 Cys and His were
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Fig. 3. Recall-Precision curves of 5-fold cross-validation of (A), (B) the

final consensus predictions for CH and CHDE in the dataset of

Passerini et al. (2006) (containing 2727 chains) and (C), (D) the SVM

predictions using a gating network for CH in the dataset of Passerini

et al. (2007) (containing 2428 chains) on residue level and protein level.

At the point A, 60% of all zinc-binding Cys and His are found and 76%

of the predicted zinc-binding Cys and His actually bind to zinc. At the

point B, 60% of protein chains that have Cys and His binding to zinc

are found and 63% of the protein chains predicted to have Cys and His

binding to zinc actually bind to zinc.
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false positives. The average homology-based prediction score for

these 115 residues was 0.666 but only 0.079 for SVMpredictions.

The inaccuracy in homology-based predictions was compen-

sated by the SVM predictions. In conclusion, the consensus

using both SVM predictor and homology-based predictor

resulted in an overall significantly better result.
Although the dataset we used was a non-redundant set of

PDB which did not have any two sequences with HSSP distance

more than 0 (equivalent to amino acid sequence identity520%

when sequence length is 300), distant homologues still existed

within the dataset. About 80% of all chains in this dataset

(2208 out of 2727) had at least one chain within the same SCOP

superfamily and 57% (1545 out of 2727) in the same SCOP

family in the training set. It significantly helped the prediction

of zinc-binding if there was another protein from the same

SCOP family or superfamily in the dataset. The AURPC for

CH on the residue level for 2208 chains which had homologues

on the superfamily level was 0.740, and as high as 0.813 for the

1545 chains which had family level homologues (Fig. 4B). Our

segment matching method detected these remote homologues

successfully. When cutting the homology score at a threshold of

25.0, 4796 homologues were predicted for 1249 chains (many

query chains have more than one predicted homologues). Out

of these 4796 predicted homologues, 4126, i.e. 86% are indeed

homologous to their corresponding query chains according to

the SCOP (within the same SCOP superfamily). Out of those

1249 chains, 1194 (i.e. 96%) of them have at least one predicted

homologue that really is a homologue according to the SCOP,

and they cover 54% (1194 out of 2208) of all chains that have

homologues in their corresponding training set. More details of

the segment matching method as well as benchmarking will be

described in a coming article.
On the other hand, there were 519 proteins without any

homologue in the training set, as defined by the SCOP. For

those, the AURPC was only 0.621, which was in accordance

with another one of our predictions based on the dataset of

Passerini et al. (2007) with homologues removed in the cross-

validation separation (see Section 3.1).
Now, look again at the Recall–Precision curve of the final

prediction of CH for the 1249 chains that each has at least one

homologue (from the training set) predicted by our Segment

Matching Method. The AURPC for those 1249 chains was
0.854. Zinc-binding Cys and His were predicted with 90%
precision at 70% recall (Fig. 4B). This encouraging result

means that if a chain has homologues predicted in the training
set (not necessarily confirmed to be homologues), zinc-binding
Cys and His can be predicted with 90% precision at 70% recall

compared with the overall performance for all 2727 chains
(56% precision at 70% recall, Fig. 3A). With more and more

protein structures deposited in PDB,465% of the newly added
proteins are estimated to have at least one homologue in the
SCOP domain database (Ekman et al., 2005). All such proteins

can now be predicted at great accuracy for zinc-binding sites.

3.3 Predictions for different residues

Of the four amino acids that bind to zinc, Cys, His, Asp and
Glu, Cys was predicted with the highest accuracy. At the 60%

recall level, the precision of Cys was 93%, but it was only 35,
3.0 and 1.0% for His, Asp and Glu (Fig. 4C). This is mainly

because of the higher percentage of Cys that binds to zinc.
The proportion of each amino acid that binds to zinc is Cys:
5.8%, His: 2.4%, Asp: 0.28% and Glu: 0.13%. The precision

ratio for Cys, His, Asp and Glu at 60% recall, divided by their
corresponding proportion of zinc-binding residues out of all
residues was 16:15:11:8. When looked upon in this way, Cys

and His were only slightly better predicted than Asp and Glu.
This slightly better performance may be due to the fact that
zinc-binding Cys and His are more conserved than zinc-binding

Asp and Glu. For example, almost 97% of the Cys and 90% of
the His that bind to zinc have conservation score over 0.7, but

only about 60% of the zinc-binding Asp and 31% of the zinc-
binding Glu are so conserved (see Supplementary Data). The
introduction of Asp and Glu did not improve the overall

prediction accuracy. The prediction results on Asp and Glu
alone might not be useful for biologists given the current
prediction accuracy. However, the introduction of Asp and Glu

might help when the whole pattern of the zinc-binding site
needs to be predicted.

3.4 False positives predicted with high confidence

We looked in detail into several cases where our zinc prediction

failed. Eighteen proteins were predicted as zinc-binding with
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490% confidence, yet do not bind to zinc according to PDB.
Most of these false positive chains bind to iron. Some have a

series of closely located Cys or His binding to iron–sulfur
clusters (1B25A and 1E7PB), iron oxides (1E5DA) or heme

groups (1BVB). Others have four Cys tetragonally bound to

Fe2þ (1B13A and 1B71A). In 1B13A and 1B71A, iron-binding
sites are actually quite similar to zinc-binding sites and at such

sites the Fe2þ could possibly be substituted by Zn2þ. Three

chains (1CW0A, 1M65A and 1B71A) were grouped as false
positives although the proteins bind to zinc but were not

predicted at exactly the correct positions. For example, in
1CW0A, four residues Cys66, His71, Cys73 and Cys117 that

bind to zinc are all highly conserved (conservation score40.9).

However, there is another conserved histidine nearby: His69.
Our procedure is not capable of determining which one of His69

and His71 that actually binds to zinc, or perhaps both His69 and

His71 bind, so that only two of those three Cys bind. Two chains
(1JR8A and 1D0GR) are disulfide-bonded. Disulfide-bonded

Cys were sometimes mis-predicted as zinc-binding since many of
them are also highly conserved and closely located. One chain

(1AW6) binds to cadmium while according to the literature

(Baleja et al., 1997) and the SCOP classification (Zn2/Cys6
DNA-binding Domain), it is actually a zinc-binding protein. We

have classified 1AW6 as a zinc-binding protein.
Seven chains (1J6OA, 1K5KA, 1NJQA, 1NBFA, 1QXFA,

1BHI and 1N5GA) are neither metal-binding nor disulfide-
bonded according to PDB. Some protein chains indeed have the

three or four putatively zinc-binding residues closely located in

3D space (see Supplementary Data for an example of 1J6OA).
1QXFA (Herve du Penhoat et al., 2004), 1BHI (Nagadoi et al.,

1999) and 1N5GA (Evanics et al., 2003) are actually recorded

as zinc-binding proteins according to the literature. These three
proteins were also classified as zinc-binding in this study. The

reason for the absence of zinc in the PDB files might be that the
proteins were purified in zinc-free buffers. This shows that our

method for predicting zinc-binding proteins is so powerful that

it can find ‘errors’ in PDB.

3.5 False negatives predicted with low confidence

Someproteins that bind to zinc inPDBwere strongly predicted as

non-zinc-binding.Forexample,11proteinchains(1A0B,1B0NA,
1B55A, 1EC5A, 1EVKA, 1F35A, 1GL4A, 1JI3A, 1JKEA,

1PGUA and 1UDVA) that bind to zinc according to PDB were

predicted at confidences lower than 10%. Four of them (1A0B,
1B0NA, 1F35A and 1JKEA) were crystallized in a condition

with high-zinc concentrations (5 mM� 300mM). It is likely

that these proteins do not bind Zn in vivo. For example, 1B0NA
is actually not a zinc-binding protein in vivo (Lewis et al., 1998).

3.6 Anticipating an upper limit for zinc-binding prediction

When predicting zinc-binding sites from amino acid sequences,
we have implicitly assumed that the sequences fully determine

whether a protein binds zinc or not. However, proteins may exist

under different conditions in vivo, e.g. binding or not binding to
zinc. There are also many protein structures deposited in PDB,

after experiments such as residue mutations, metal substitution

as well as removing and adding of metals. As a consequence,
there are proteins in PDB which natively bind to zinc but Zn

atoms have been lost or substituted during experiments

(e.g. 1QXFA, 1BHI and 1AW6). There are also proteins in
PDB which do not bind to zinc in vivo, but do bind zinc when

soaked with high concentrations of zinc during crystallization

(e.g. 1B0NA mentioned above). Luckily, most of these soaked

Zn atoms are not strongly bound and usually bind to only one or

two residues located on the surface of the protein. Such cases are

easy to identify. More serious problems are caused by protein

structures that have lost their Zn atom(s) or have had Zn atom(s)

substituted by other metals during purification or crystal-

lization, or the reverse case, where zinc has substituted other

metals that bind in vivo. All such cases limit the outcome of the

prediction of zinc-binding from sequences.

3.6.1 Effect of possible errors in PDB on the prediction We

have recovered some obviously mis-annotated zinc-binding
proteins in PDB by investigating the literature and the SCOP

(for a complete list see Supplementary Data) manually.

However, zinc-binding states for most proteins are still based

entirely on PDB data. How far then can we trust the zinc-

binding prediction, based on PDB data with an unknown (but

with all likelihood very small) number of errors?
A comprehensive verification of zinc-binding states for all

proteins in the PDB is outside the scope of this article. We are

not aware of any manually curated database for metal-binding

sites in proteins. Nevertheless, by artificially introducing errors

about zinc-binding in PDB and carrying out prediction on such

datasets with different error rates, we could estimate the effect

of incorrectness in PDB on the performance of predictions. For

this purpose, we randomly assigned a certain fraction of

residues that bind zinc to non-zinc-binding. After that, the same

procedure as was applied on the original PDB was carried out

on this manually modified ‘PDB’. As expected, the perfor-

mance of the prediction decreases as the error rate increases, as

shown in Figure 5. For example, the precision for CH on the

residue level dropped by about 5% at 50% recall when 10% of

the zinc-binding residues were annotated as non-zinc-binding.

It is reasonable to assume the error rate in PDB regarding zinc-

binding to be well under 10%. Then, the prediction for CH on

the residue level based on the current PDB cannot be more than
5% worse in precision at 50% recall level, compared to a

prediction based on a putative perfect ‘PDB’, according to the

trend in Figure 5.

3.7 Predicting the whole pattern of zinc-binding sites

In this work, we focused only on predicting the zinc-binding

state of individual residues, i.e., whether a Cys, His, Asp or Glu

binds to zinc or not. However, the prediction of the whole zinc-

binding site, especially the prediction of which three or four

residues that bind to the same Zn atom, might also be very

interesting. The accurate prediction of the whole zinc-binding

pattern will be of great help to the engineering of metal-binding

sites in proteins and it will also be a great help for 3D structure

prediction, since it reduces the freedom in protein structure

prediction enormously. Nevertheless, we can already see some

success in the prediction of the whole zinc-binding pattern in

this work. Cutting at 60% confidence level (for Cys, His, Asp

and Glu), 38% (113/295) of all Zn3 and Zn4 binding sites were

exactly predicted, and this number increased to 54% (159/295)

when one residue tolerance was allowed (i.e. the whole Zn3 or
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Zn4 binding pattern were considered correctly predicted when
two or three residues respectively, were correctly predicted).

Our future goal is to predict the whole zinc-binding pattern.

4 CONCLUSION

We presented a method to predict zinc-binding sites from
amino acid sequences by combining SVM predictions and

homology-based predictions. The method predicted Cys, His,
Asp and Glu with 75% precision (86% for Cys and His only) at
50% recall level, when tested on a non-redundant set of PDB

containing 2727 unique protein chains. The success rate was
even higher if homologues were predicted: for Cys, His, Asp
and Glu with 76% precision (90% for Cys and His only) at the

70% recall level. The predictions were so reliable that some
occasional putative errors of PDB regarding zinc-binding were
found. We would expect the use of our method for predicting
zinc-binding residues as a useful tool to check, for example,

whether amino acids of a little-characterized protein are
actually involved in binding zinc.
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Fig. 5. Recall–Precision curves of the final consensus prediction for CH

on residue level with different rates of artificially introduced errors

upon zinc-binding. Error rate¼ 0.10 means 10% (i.e. 102) of randomly

selected zinc-binding residues are annotated as non-zinc-binding. When

a zinc-binding residue is selected to be annotated as non-zinc-binding,

all residues binding to the same Zn atom as this one are annotated as

non-zinc-binding.
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